Search results

1 – 2 of 2
Article
Publication date: 10 June 2021

Chunxiao Jiao, Jianghai Xu, Donglin Zou, Na Ta and Zhushi Rao

The purpose of this paper is to study the flow field characteristics of the micro-scale textured bearing surfaces using the lattice Boltzmann method based on the microscopic…

Abstract

Purpose

The purpose of this paper is to study the flow field characteristics of the micro-scale textured bearing surfaces using the lattice Boltzmann method based on the microscopic dynamics of the fluid.

Design/methodology/approach

Considering the inertia effects and the micro-scale effects, the models of a single micro-scale texture unit cell with different shapes and different film thickness ratios are established. The influence of pressure difference between inlet and outlet of the unit cell on flow characteristics is studied.

Findings

The surface pressure distribution, flow patterns and pressure contours in the flow field are obtained. The results reveal that the pressure difference has a significant influence on the characteristics of the micro-textured flow field.

Originality/value

The results have certain guiding significance for further step investigation on microscopic lubrication mechanism of the water-lubricated polymer bearings.

Details

Industrial Lubrication and Tribology, vol. 73 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 26 November 2018

Fangrui Lv, Chunxiao Jiao, Donglin Zou, Na Ta and Zhu-shi Rao

The purpose of this paper is to analyze the lubrication behavior of misaligned water-lubricated polymer bearings with axial grooves.

Abstract

Purpose

The purpose of this paper is to analyze the lubrication behavior of misaligned water-lubricated polymer bearings with axial grooves.

Design/methodology/approach

A lubrication model considering journal misalignment, bush deformation and grooves is established. In dynamic analyses of shaft systems, bearings are usually simplified as supporting points. Thus, an approach for solving the equivalent supporting point location is presented. The influence of misalignment angle and groove number on film thickness, hydrodynamic pressure distribution, load-carrying capacity and ESP location is investigated.

Findings

As the misalignment angle increases, the location of the maximum pressure and ESP are shifted toward the down-warping end, and the load-carrying capacity of the bearing decreases. In comparison to the nine-groove bearing, the six grooves bearing has a higher load-carrying capacity and the ESP is located closer to the down-warping end for an equivalent misalignment angle.

Practical implications

The results of this study can be applied to marine propeller shaft systems and other systems with misaligned bearings.

Originality/value

A study on the lubrication behavior of misaligned water-lubricated polymer bearings with axial grooves is of significant interest to the research community.

Details

Industrial Lubrication and Tribology, vol. 71 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 2 of 2